Causal inference: for statistics, social, and biomedical sciences

Chapter 7: Regression methods for completely randomized experiments

Kunwoong Kim

2022.7.15.

<ロト < @ ト < E ト < E ト E の Q へ 1/21

Contents

- 1. Introduction
- 2. The LRC-CPPT cholesterol data
- 3. The super-population average treatment effects
- 4. Linear regression with no covariates
- 5. Linear regression with additional covariates
- 6. Linear regression with covariates and interactions
- 7. Transformations of the outcome variable
- 8. The limits on increases in precision due to covariates
- 9. Testing for the presence of treatment effects
- 10. Estimates for LRC-CPPT cholesterol data

In this section, we maintain an assumption of a completely randomized experiment.

- Consider models for the observed outcomes.
- The average treatment effect is a parameter of the statistical model (linear model in this section).
- The estimates with finite samples are consistent, that is, converge to the true average causal effect.

The LRC-CPPT cholesterol data

Later, we will use LPC-CPPT (Lipid Research Clinics Coronary Primary Prevention Trial) data from a randomized experiment.

- For 337 individuals, $N_t = 165$ are treated randomly (received cholestyramine) and $N_c = 172$ are controlled.
- Variables
 - Pre-treatment
 - chol1: initial cholesterol level
 - cho12: cholesterol level after a communication about benefits of a low-cholesterol diet
 - ▶ $cholp = 0.25 \cdot chol1 + 0.75 \cdot chol2$
 - Post-treatment
 - cholf: cholesterol level averaged over 2 month for 7.3 years
 - chold = cholf cholp
 - comp: taken dose of either treatment or placebo.

We will see the differences induced by the treatment (or placebo).

The super-population average treatment effects

This section introduces some notations.

- Assume we have N random samples from the super-population.
- ▶ Also denote N_t the number of treated individuals, and N_c the number of controlled individuals with $N = N_t + N_c$.
- ► Abbreviate "fs" as finite sample and "sp" super-population.
- ▶ Then, for average effects of the treatment,

$$\tau_{fs} = \frac{1}{N} \sum_{i=1}^{N} \left(Y_i(1) - Y_i(0) \right) \text{ for finite sample,}$$
(1)

and

$$au_{sp} = \mathbb{E}_{sp} \left(Y_i(1) - Y_i(0) \right)$$
 for super-population.

The super-population average treatment effects

For means and variances of Y|X, Y, and X, and for the average causal effects, we denote as the followings.

Linear regression with no covariates

- ▶ Let $W_i \in \{0, 1\}$ the indicator for the receipt of treatment, and Y_i^{obs} the observed outcome of the *i*th individual.
- ▶ For the model, we consider a linear regression function as

$$Y_i^{obs} = \alpha + \tau \cdot W_i + \epsilon_i$$

where ϵ_i is the unobserved error independent to W_i .

The least squares estimate of τ is interpreted as an estimate of the causal effect of the treatment:

$$\hat{\tau}^{ols} = \frac{1}{N_t} \sum_{i:W_i=1} Y_i^{obs} - \frac{1}{N_c} \sum_{i:W_i=0} Y_i^{obs}$$

• Moreover, $\hat{\tau}^{ols}$ is unbiased for τ_{fs} as well as τ_{sp} .

Linear regression with no covariates

Estimates of $\hat{\tau}_{ols}$ variances under

• Homoskedasticity $(\sigma_{Y|W}^2 = \sigma_c^2 = \sigma_t^2)$:

$$\hat{\mathbb{V}}^{homosk} = \frac{s^2}{N_c} + \frac{s^2}{N_t} \tag{2}$$

• Heteroskedasticity ($\sigma_c^2 \neq \sigma_t^2$):

$$\hat{\mathbb{V}}^{hetero} = \frac{s_c^2}{N_c} + \frac{s_t^2}{N_t} \tag{3}$$

<ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 の < で 8/21

Linear regression with additional covariates

The key insight is that, by randomizing treatment assignment, the super-population correlation between the treatment indicator W_i and the covariate X_i is 0.

For the model, we consider a linear regression function with additional covariates as

$$Y_i^{obs} = \alpha + \tau \cdot W_i + X_i\beta + \epsilon_i$$

where X_i is a row vector of covariates and ϵ_i is the unobserved error.

Linear regression with additional covariates

Consistency of least squares estimators

• $\tau^{ols} \rightarrow \tau_{sp}$ in probability.

$$\sqrt{N}\left(\hat{\tau}^{ols} - \tau_{sp}\right) \to \mathcal{N}\left(0, \Sigma\right)$$

<ロト < 昂ト < 王ト < 王ト 王 の Q @ 10/21

for some Σ .

As the last one, we consider a linear regression function with additional covariates as

$$Y_i^{obs} = \alpha + \tau \cdot W_i + X_i\beta + W_i \cdot (X_i - \bar{X})\gamma + \epsilon_i$$

<ロト < 母 ト < 王 ト < 王 ト 王 · ク へ で 11/21

where ϵ_i is the unobserved error.

We compute the unit-level causal effect of ith individual as the following two cases.

▶ Treated, i.e., W_i = 1

Ŷ_i(0) = â^{ols} + X_iβ̂^{ols}: predicted
Y_i(1): observed
\hat{\tau}_i = Y_i(1) - Ŷ_i(0) = Y_i^{obs} - (â^{ols} + X_iβ̂^{ols})

▶ Controlled, i.e., W_i = 0

Y_i(0): observed
Ŷ_i(1) = â^{ols} + î^{ols} + X_iβ̂^{ols} + (X_i - X̄)î^{ols} - Y_i^{obs}: predicted
\hat{\tau}_i = Ŷ_i(1) - Y_i(0) = â^{ols} + î^{ols} + X_iβ̂^{ols} + (X_i - X̄)î^{ols} - Y_i^{obs}

Consistency of least squares estimators

▶ $\tau^{ols} \rightarrow \tau_{sp}$ in probability.

$$\sqrt{N}\left(\hat{\tau}^{ols}-\tau_{sp}\right)\to\mathcal{N}\left(0,\Sigma\right)$$

<ロト < 昂ト < 臣ト < 臣ト 臣 の Q @ 13/21

for some Σ .

We can estimate the overall average treatment effect τ_{fc} by averaging the estimates of the unit-level causal effects $\hat{\tau}_i$.

$$\hat{\tau}^{ols} = \frac{1}{N} \sum_{i=1}^{N} \hat{\tau}_i$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(W_i \left(Y_i(1) - \hat{Y}_i(0) \right) + (1 - W_i) \left(\hat{Y}_i(1) - Y_i(0) \right) \right)$$
(4)

Thus we can conclude that the least squares estimator \(\tilde{\tau}^{ols}\) can be interpreted as averaging estimated unit-level causal effects.

Transformations of the outcome variable

One can be interested in the average effect of the treatment on a *transformation* of the outcome.

► For example, assume

$$\ln(Y_i^{obs}) = \alpha + \tau W_i + X_i \beta + \epsilon_i.$$
(5)

Then, least squares estimates of τ are consistent for the average effect $\mathbb{E}(\ln(Y_i(1)) - \ln(Y_i(0)))$.

The limits on increases in precision due to covariates

Including covariates in the linear regression model would increase the precision of the estimator for the average treatment effect.

▶
$$N \cdot \mathbb{V}_{nocov} = \frac{\sigma_c^2}{1-p} + \frac{\sigma_t^2}{p}$$
: with no covariates
▶ $N \cdot \mathbb{V}_{bound} = \frac{\mathbb{E}_{sp}(\sigma_c^2(X_i))}{1-p} + \frac{\mathbb{E}_{sp}(\sigma_t^2(X_i))}{p}$: with additional covariates

The difference between the two variances are:

$$\mathbb{V}_{nocov} - \mathbb{V}_{bound} = \frac{\mathbb{V}_{sp}(\mu_c(X_i))}{1-p} + \frac{\mathbb{V}_{sp}(\mu_t(X_i))}{p}.$$
 (6)

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 16/21</p>

 Additional covariates X_i increase the precision and decrease the variance.

Testing for the presence of treatment effects

In addition, not only estimating average treatment effect, but we can also test for the presence of treatment effects.

$$H_{0}: \mathbb{E}_{sp} (Y_{i}(1) - Y_{i}(0) | X_{i} = x) = 0, \forall x,$$

vs.
$$H_{a}: \mathbb{E}_{sp} (Y_{i}(1) - Y_{i}(0) | X_{i} = x) \neq 0, \text{ for some } x.$$
(7)

Estimates for LRC-CPPT cholesterol data

Here, we return to the LRC-CPPT cholesterol data and look at estimates for two average effects: (1) the effect on cholf, and (2) the effect on comp.

◆□▶ < @▶ < E▶ < E▶ E のQ (* 18/21)</p>

► For detailed descriptions of variables, please revisit 7.2.

Estimates for LRC-CPPT cholesterol data

- Including more covariates in model improves the precision.
- Estimates of \(\tau\) are negative for all cases, that is, treatment reduces cholesterol levels.

Covariates	Effect of Assignment to Treatment on			
	Post-Cholesterol Level		Compliance	
	Est	(s.e.)	Est	(s.e.)
No covariates	-26.22	(3.93)	-14.64	(3.51)
cholp	-25.01	(2.60)	-14.68	(3.51)
chol1, chol2	-25.02	(2.59)	-14.95	(3.50)
chol1, chol2, interacted with W	-25.04	(2.56)	-14.94	(3.49)

 Table 7.2. Regression Estimates for Average Treatment Effects for the PRC-CPPT Cholesterol Data from Table 7.1

Estimates for LRC-CPPT cholesterol data

Transformed cholesterol levels (logarithm).

 Table 7.3. Regression
 Estimates
 for
 Average
 Treatment
 Effects
 on

 Post-Cholesterol Levels
 for the PRC-CPPT
 Cholesterol Data from Table 7.1
 The PRC-CPPT
 Cholest

Covariates	Model for Levels		Model for Logs	
	Est	(s.e.)	Est	(s.e.)
Assignment	-25.04	(2.56)	-0.098	(0.010)
Intercept	-3.28	(12.05)	-0.133	(0.233)
chol1	0.98	(0.04)	-0.133	(0.233)
chol2-chol1	0.61	(0.08)	0.602	(0.073)
chol1 × Assignment	-0.22	(0.09)	-0.154	(0.107)
(chol2-chol1) × Assignment	0.07	(0.14)	0.184	(0.159)
R-squared	0	.63	0.:	57

Conclusion

Linear regression models with complete randomization for three cases:

Section	Covariates	Interactions	
7.4	Х	Х	
7.5	0	Х	
7.6	0	0	

- The randomization is a necessary condition for the consistency of the least squares estimator.
- A bridge from exact results based on randomization inference to the model-based methods: we will see in the next chapter.