
1/21

Causal inference: for statistics, social, and
biomedical sciences

Chapter 7: Regression methods for completely randomized
experiments

Kunwoong Kim

2022.7.15.



2/21

Contents

1. Introduction

2. The LRC-CPPT cholesterol data

3. The super-population average treatment effects

4. Linear regression with no covariates

5. Linear regression with additional covariates

6. Linear regression with covariates and interactions

7. Transformations of the outcome variable

8. The limits on increases in precision due to covariates

9. Testing for the presence of treatment effects

10. Estimates for LRC-CPPT cholesterol data



3/21

Introduction

In this section, we maintain an assumption of a completely
randomized experiment.

▶ Consider models for the observed outcomes.

▶ The average treatment effect is a parameter of the statistical
model (linear model in this section).

▶ The estimates with finite samples are consistent, that is,
converge to the true average causal effect.
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The LRC-CPPT cholesterol data

Later, we will use LPC-CPPT (Lipid Research Clinics Coronary
Primary Prevention Trial) data from a randomized experiment.

▶ For 337 individuals, Nt = 165 are treated randomly (received
cholestyramine) and Nc = 172 are controlled.

▶ Variables
▶ Pre-treatment

▶ chol1: initial cholesterol level
▶ chol2: cholesterol level after a communication about benefits

of a low-cholesterol diet
▶ cholp = 0.25 · chol1+ 0.75 · chol2

▶ Post-treatment
▶ cholf: cholesterol level averaged over 2 month for 7.3 years
▶ chold = cholf− cholp
▶ comp: taken dose of either treatment or placebo.

▶ We will see the differences induced by the treatment (or
placebo).
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The super-population average treatment effects

This section introduces some notations.

▶ Assume we have N random samples from the
super-population.

▶ Also denote Nt the number of treated individuals, and Nc the
number of controlled individuals with N = Nt +Nc.

▶ Abbreviate “fs” as finite sample and “sp” super-population.

▶ Then, for average effects of the treatment,

τfs =
1

N

N∑
i=1

(Yi(1)− Yi(0)) for finite sample,

and

τsp = Esp (Yi(1)− Yi(0)) for super-population.

(1)
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The super-population average treatment effects
For means and variances of Y |X,Y, and X, and for the average
causal effects, we denote as the followings.
▶ Y |X

▶ µc(x) = Esp(Yi(0)|Xi = x)
▶ µt(x) = Esp(Yi(1)|Xi = x)
▶ σ2

c (x) = Vsp(Yi(0)|Xi = x)
▶ σ2

t (x) = Vsp(Yi(1)|Xi = x)

▶ Y
▶ µc = Esp(Yi(0)) = Esp (µc(Xi))
▶ µt = Esp(Yi(1)) = Esp (µt(Xi))
▶ σ2

c = Vsp(Yi(0)) = Esp

(
σ2
c (Xi)

)
+ Vsp (µc(Xi))

▶ σ2
t = Vsp(Yi(1)) = Esp

(
σ2
t (Xi)

)
+ Vsp (µt(Xi))

▶ X
▶ µX = Esp(Xi)
▶ ΩX = Vsp(Xi) = Esp((Xi − µX)⊤(Xi − µX))

▶ Average causal effect
▶ τ(x) = Esp (Yi(1)− Yi(0)|Xi = x)
▶ σ2

ct(x) = Vsp (Yi(1)− Yi(0)|Xi = x)



7/21

Linear regression with no covariates

▶ Let Wi ∈ {0, 1} the indicator for the receipt of treatment, and
Y obs
i the observed outcome of the ith individual.

▶ For the model, we consider a linear regression function as

Y obs
i = α+ τ ·Wi + ϵi

where ϵi is the unobserved error independent to Wi.

▶ The least squares estimate of τ is interpreted as an estimate
of the causal effect of the treatment:

τ̂ ols =
1

Nt

∑
i:Wi=1

Y obs
i − 1

Nc

∑
i:Wi=0

Y obs
i .

▶ Moreover, τ̂ ols is unbiased for τfs as well as τsp.



8/21

Linear regression with no covariates

Estimates of τ̂ols variances under

▶ Homoskedasticity (σ2
Y |W = σ2

c = σ2
t ):

V̂homosk =
s2

Nc
+

s2

Nt
(2)

▶ Heteroskedasticity (σ2
c ̸= σ2

t ):

V̂hetero =
s2c
Nc

+
s2t
Nt

(3)
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Linear regression with additional covariates

The key insight is that, by randomizing treatment assignment, the
super-population correlation between the treatment indicator Wi

and the covariate Xi is 0.

▶ For the model, we consider a linear regression function with
additional covariates as

Y obs
i = α+ τ ·Wi +Xiβ + ϵi

where Xi is a row vector of covariates and ϵi is the
unobserved error.
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Linear regression with additional covariates

Consistency of least squares estimators

▶ τ ols → τsp in probability.

▶ √
N

(
τ̂ ols − τsp

)
→ N (0,Σ)

for some Σ.
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Linear regression with covariates and interactions

▶ As the last one, we consider a linear regression function with
additional covariates as

Y obs
i = α+ τ ·Wi +Xiβ +Wi · (Xi − X̄)γ + ϵi

where ϵi is the unobserved error.



12/21

Linear regression with covariates and interactions

We compute the unit-level causal effect of ith individual as the
following two cases.
▶ Treated, i.e., Wi = 1

1. Ŷi(0) = α̂ols +Xiβ̂
ols : predicted

2. Yi(1) : observed

3. τ̂i = Yi(1)− Ŷi(0) = Y obs
i − (α̂ols +Xiβ̂

ols)

▶ Controlled, i.e., Wi = 0

1. Yi(0) : observed

2. Ŷi(1) = α̂ols+ τ̂ols+Xiβ̂
ols+(Xi−X̄)γ̂ols−Y obs

i : predicted

3. τ̂i = Ŷi(1)−Yi(0) = α̂ols+ τ̂ols+Xiβ̂
ols+(Xi−X̄)γ̂ols−Y obs

i
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Linear regression with covariates and interactions

Consistency of least squares estimators

▶ τ ols → τsp in probability.

▶ √
N

(
τ̂ ols − τsp

)
→ N (0,Σ)

for some Σ.
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Linear regression with covariates and interactions

We can estimate the overall average treatment effect τfc by
averaging the estimates of the unit-level causal effects τ̂i.

τ̂ ols =
1

N

N∑
i=1

τ̂i

=
1

N

N∑
i=1

(
Wi

(
Yi(1)− Ŷi(0)

)
+ (1−Wi)

(
Ŷi(1)− Yi(0)

))
(4)

▶ Thus we can conclude that the least squares estimator τ̂ ols

can be interpreted as averaging estimated unit-level causal
effects.



15/21

Transformations of the outcome variable

▶ One can be interested in the average effect of the treatment
on a transformation of the outcome.

▶ For example, assume

ln(Y obs
i ) = α+ τWi +Xiβ + ϵi. (5)

Then, least squares estimates of τ are consistent for the
average effect E (ln(Yi(1))− ln(Yi(0))) .
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The limits on increases in precision due to covariates

Including covariates in the linear regression model would increase
the precision of the estimator for the average treatment effect.

▶ N · Vnocov = σ2
c

1−p +
σ2
t
p : with no covariates

▶ N · Vbound =
Esp(σ2

c (Xi))
1−p +

Esp(σ2
t (Xi))
p : with additional

covariates

▶ The difference between the two variances are:

Vnocov − Vbound =
Vsp(µc(Xi))

1− p
+

Vsp(µt(Xi))

p
. (6)

▶ Additional covariates Xi increase the precision and decrease
the variance.
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Testing for the presence of treatment effects

In addition, not only estimating average treatment effect, but we
can also test for the presence of treatment effects.

H0 : Esp (Yi(1)− Yi(0)|Xi = x) = 0,∀x,
vs.

Ha : Esp (Yi(1)− Yi(0)|Xi = x) ̸= 0, for some x.

(7)
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Estimates for LRC-CPPT cholesterol data

▶ Here, we return to the LRC-CPPT cholesterol data and look
at estimates for two average effects: (1) the effect on cholf,
and (2) the effect on comp.

▶ For detailed descriptions of variables, please revisit 7.2.
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Estimates for LRC-CPPT cholesterol data

▶ Including more covariates in model improves the precision.

▶ Estimates of τ are negative for all cases, that is, treatment
reduces cholesterol levels.
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Estimates for LRC-CPPT cholesterol data

▶ Transformed cholesterol levels (logarithm).
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Conclusion

▶ Linear regression models with complete randomization for
three cases:

Section Covariates Interactions

7.4 X X
7.5 O X
7.6 O O

▶ The randomization is a necessary condition for the consistency
of the least squares estimator.

▶ A bridge from exact results based on randomization inference
to the model-based methods: we will see in the next chapter.


